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Collective atomic scattering and motional effects
in a dense coherent medium
S.L. Bromley1, B. Zhu1, M. Bishof1,w, X. Zhang1,w, T. Bothwell1, J. Schachenmayer1, T.L. Nicholson1,w, R. Kaiser2,

S.F. Yelin3,4, M.D. Lukin4, A.M. Rey1 & J. Ye1

We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform

two sets of experiments using a strong and weak transition that are insensitive and sensitive,

respectively, to atomic motion at 1 mK. We observe highly directional forward emission with a

peak intensity that is enhanced, for the strong transition, by 4103 compared with that in the

transverse direction. This is accompanied by substantial broadening of spectral lines. For the

weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile,

a density-dependent frequency shift of the weak transition (B10% of the natural linewidth)

is observed. In contrast, this shift is suppressed to o1% of the natural linewidth for the

strong transition. Along the transverse direction, we observe strong polarization dependences

of the fluorescence intensity and line broadening for both transitions. The measurements

are reproduced with a theoretical model treating the atoms as coherent, interacting

radiating dipoles.
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U
nderstanding interactions between light and matter in a
dense atomic medium is a long-standing problem in
physical science1,2 since the seminal work of Dicke3.

In addition to their fundamental importance in optical physics,
such interactions play a central role in enabling a range of new
quantum technologies including optical lattice atomic clocks4 and
quantum networks5.

The key ingredient in a dense sample is dipole–dipole
interactions that arise from the exchange of virtual photons
with dispersive and radiative contributions, and their relative
magnitude varies between the near-field and far-field regimes.
The dispersive (real) part is responsible for collective level shifts
and the radiative (imaginary) part gives rise to line broadening
and collective superradiant emission6–8. Intense theoretical
efforts have been undertaken over many years, to treat the
complex interplay between the dispersive and radiative
dynamics9–18. However, experimental demonstrations that
provide a complete picture to clarify these interactions have
been elusive.

Collective level shifts and line broadening arising from the real
and imaginary parts of dipole–dipole interactions have recently
been observed in both atomic19–23 and condensed matter24

systems. The modification of radiative decay dynamics at low
excitation levels has also been observed using short probe
pulses25–28, and interaction effects were manifested in coherent
backscattering29,30. Although simple models of incoherent
radiation transport have often been used to describe light
propagation through opaque media31,32 and radiation trapping
in laser cooling of dense atomic samples33, coherent effects
arising from atom–atom interactions, which are necessary to
capture correlated many-body quantum behaviour induced by
dipolar exchange, are beginning to play a central role. For
example, the dipole–dipole interaction is responsible for the
observed dipolar blockade and collective excitations in Rydberg
atoms34–41; it may also place a limit to the accuracy of an optical
lattice clock and will require non-trivial lattice geometries to
overcome the resulting frequency shift42. Previous theoretical
efforts have already shown that physical conditions such as finite
sample size, sample geometry and the simultaneous presence of
dispersive and radiative parts can play crucial roles in atomic
emission10–13,43–45.

In this work we use millions of Sr atoms in optically thick
ensembles, taking advantage of the unique level structure of Sr to
address motional effects, to study these radiative and
dispersive parts simultaneously. We demonstrate that a single,
self-consistent, microscopic theory model can provide a
unifying picture for the majority of our observations. These
understandings can help underpin emerging applications based
on many-body quantum science, such as lattice-based optical
atomic clocks4,46,47, quantum nonlinear optics39, quantum
simulations48 and atomic ensemble-based quantum memories49.

Results
Experimental setup. Bosonic alkaline-earth atoms with zero
nuclear spin have simple atomic structure compared with the
more complex hyperfine structure present in typical alkali
metal atoms that complicates the modelling and interpretation
of the experimental observations. For example, 88Sr atoms have
both a strong 1S0� 1P1 blue transition (l¼ 461 nm) and a
spin-forbidden weak 1S0� 3P1 red transition (l¼ 689 nm), with a
strict four-level geometry (Fig. 1a). When the atoms are cooled to
a temperature of B1 mK, Doppler broadening at 461 nm is
B55 kHz, which is almost three orders of magnitude smaller
than the blue transition natural linewidth, G¼ 32 MHz. To an
excellent approximation, atomic motion is negligible for atomic

coherence prepared by the 461-nm light. To the contrary, the red
transition with a natural linewidth G¼ 7.5 kHz is strongly
affected by atomic motion. By comparing the behaviours of
the same atomic ensemble observed at these two different
wavelengths (Fig. 1b), we can thus collect clear signatures of
motional effects on coherent scattering and dipolar coupling50,51.

We use the experimental scheme shown in Fig. 1a, to perform a
comprehensive set of measurements of fluorescence intensity
emitted by a dense sample of 88Sr atoms. The sample is released
from the trap and then illuminated with a weak probe laser. We
vary the atomic density, cloud geometry, observation direction
and polarization state of the laser field, and we report the system
characteristics using three key parameters as follows: the peak
scattered intensity, the linewidth broadening and the line centre
shift. For example, along the forward and transverse directions we
observe different values of intensity and linewidth broadening, as
well as their dependence on light polarization (see Fig. 1c).
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Figure 1 | The experimental scheme and concept. (a) We weakly excite

the strontium atoms with a linearly polarized probe beam and measure the

fluorescence with two detectors: one in the forward direction, x̂, and the

other almost in the perpendicular direction, ẑ. We probe two different J¼0

to J’¼ 1 transitions. The first transition is a 1S0� 1P1 blue transition with a

natural linewidth of G¼ 32 MHz and the second is a 1S0� 3P1 red transition

with G¼ 7.5 kHz. (b) In the coherent dipole model, photons are shared

between atoms. When the Doppler broadened linewidth becomes

comparable to the natural linewidth, dephasing must be considered. At our

B1mK temperatures the Doppler broadening is E40 kHz, meaning

motional effects are important only for the red transition. (c) The three-

dimensional intensity distribution predicted for a blue probe beam. The

coupled dipole model predicts a strong 103 enhancement of the forward

intensity compared with other directions and a finite fluorescence along a

direction parallel to the incident polarization. The speckled pattern is due to

randomly positioned atoms and can be removed by averaging over multiple

atom configurations.
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We also observe motional effects on the red transition in contrast
to the same measurements on the blue transition.

In the experiment, up to 20 million 88Sr atoms are cooled to
B1mK in a two-stage magneto-optical trap, the first based on the
blue transition and the second on the red transition. The
atomic cloud is then released from the magneto-optical trap and
allowed to expand for a variable time of flight (TOF), which
allows us to control its optical depth and density. They are
subsequently illuminated for 50(100) ms with a large-size probe
beam resonant with the blue (red) transition (Fig. 2a). The
resulting scattered light is measured with two detectors far away
from the cloud (see Fig. 1a). One detector is along the forward
direction x̂ (detector DF) and the other along the transverse
direction ẑ (detector DT, offset by B10�). For a short TOF, the
atomic cloud is anisotropic and has an approximately Gaussian
distribution with an aspect ratio of Rx:Ry:Rz¼ 2:2:1, where R{x,y,z}

are the root-mean-squared radii. We define OD as the on
resonance optical depth of the cloud, OD ¼ 3N

2 kR?ð Þ2, where R>
depends on the direction of observation with R>,T¼Rx¼Ry and
R>,F¼ (RzRy)1/2 for the transverse and forward directions
respectively, N is the atom number and k is the laser wavevector
for the atomic transition (see Supplementary Note 1).

Forward observations. The coherent effect manifests itself
most clearly in the forward direction (Fig. 2). To separate the
forward fluorescence from the probe beam, we focus the probe
with a lens (L1) after it has passed through the atomic cloud and
then block it with a beam stopping blade, which can be translated
perpendicular to the probe beam (Fig. 2a inset). The same lens
(L1) also collimates the atomic fluorescence so that it can be
imaged onto DF. The position of the beam stopper can be used to
vary the angular range of collected fluorescence, characterized
by the angle (y) between x̂ and the edge of the beam stopper
(see Methods). Using the maximum atom number available in
the experiment, the measured intensity Ix,0(y) is normalized to
that collected at ymax¼ 7.5 mRad. Both the blue (square) and red
(triangle) transition results are displayed in Fig. 2a. For the
blue transition, we observe a 1,000-fold enhancement of the
normalized intensity for yo0.5 mRad. The enhancement is also
present for the red transition, but it is reduced by nearly two
orders of magnitude at small y due to the motional effect. On the

other hand, the wider angular area of enhancement is attributed
to the longer wavelength of the red transition. The forward
intensity strongly depends on the atom number. In Fig. 2b, we
present measurements of the forward intensity Ix versus the
transverse intensity Iz at a fixed y¼ 2 mRad for different atom
numbers. The intensities are normalized to those obtained at the
peak atom number as used in Fig. 2a. To the first-order
approximation, the transverse fluorescence intensity scales line-
arly with the atom number. Hence, the forward intensity of both
the blue and red transitions scales approximately with the atom
number squared.

In the forward direction, we have also investigated the
linewidth broadening of the blue transition as a function of the
atomic OD. By scanning the probe frequency across resonance,
we extract the fluorescence linewidth, which is found to be
determined primarily by the OD of the cloud (open squares in
Fig. 2c). For the range of 0oODo20, the lineshape is Lorentzian
(see insets); however, the observed lineshape starts to flatten at
the centre for OD420. We have also varied the atom number by
a factor of four, and to an excellent approximation the linewidth
data are observed to collapse to the same curve when plotted as a
function of OD (open triangles).

Transverse observations. For independent emitters, the forward
fluorescence should have no dependence on the probe beam
polarization; however, the transverse fluorescence (along ẑ)
should be highly sensitive to the probe polarization and it is even
classically forbidden if the probe is ẑ polarized. However, multiple
scattering processes with dipolar interactions can completely
modify this picture by redistributing the atomic population in the
three excited magnetic states and thus scrambling the polarization
of the emitted fluorescence. Consequently, even for a ẑ-polarized
probe there should be a finite emission along ẑ (see Fig. 1c), with
an intensity that increases with increasing OD. Our experimental
investigation of the fluorescence properties along the transverse
direction is summarized in Fig. 3. Under the same OD along ẑ,
the ŷ-polarized probe beam (square) gives rise to a much more
broadened lineshape for the blue transition than the ẑ-polarized
probe beam does (triangle), as shown in Fig. 3a. Meanwhile, the
peak intensity ratio of Iypol/Izpol decreases significantly with
an increasing OD, indicating the rapidly rising fluorescence with
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Figure 2 | Forward scattering. (a) Comparison of forward scattering intensity versus angle using a red and blue probe beam. We use the setup shown in

the inset, to block the probe beam. After interacting with the atoms the probe beam is focused using a lens, which also collimates the fluorescence from the

atoms. We block the probe beam using a beam stopper, which we translate perpendicular to the probe beam, to change the angular range of fluorescence

collected by the detector, characterized by the angle (y) between x̂ and the edge of the beam stopper (see Methods). The measured intensity, Ix,0(y), for

each probe beam is normalized to the intensity at ymax¼ 7.5 mRad. The dephasing caused by motion reduces the forward intensity peak for the red

transition. (b) Comparison of intensity in the forward direction, Ix, versus intensity in the transverse direction, Iz. Both are varied by changing N. All

measurements are made at y¼ 2 mRad (arrow in a) and normalized to the intensity, Ix,0, for the atom number used in a. (c) Linewidth broadening in the

forward direction measured by scanning the blue probe beam detuning, D, across resonance. Example lineshapes for different ODs are shown in the inset.

Two different atom numbers are used, N¼ 1.7(2)� 107 (blue squares) and N/4 (cyan triangles). The dashed line represents G for reference. All solid curves

are based on the full theory of coupled dipoles and the band in c is for a ±20% atom number uncertainty. All error bars are for statistical uncertainties.
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a ẑ-polarized probe when OD increases (Fig. 3b). For the red
transition, the existence of Doppler broadening requires the
lineshape data to be fitted to a Voigt profile. With the Doppler
linewidth DD fixed from the thermal velocity measured in free
expansion, the Voigt profile determines the line centre and the
Lorentzian linewidth with the Gaussian linewidth determined by
the temperature. Figure 3c displays the Lorentzian linewidth
obtained with a ŷ-polarized red probe showing a strong increase
of the linewidth with OD.

Spectral broadening and shift. To a good approximation, the
dependence of the linewidth on OD along the forward and
transverse directions (for the classically allowed ŷ polarization in
the single scattering limit) is similar. However, owing to the
anisotropic aspect ratio of the cloud, for the same TOF, the OD is
lower along ẑ than along x̂. This is responsible for the smaller
broadenings measured along ẑ than along x̂. The classically
forbidden polarization direction, on the other hand, exhibits a
different scaling with OD, which is understandable given that the
emission in this case comes only from multiple scattering events
with dipolar interactions. The transverse linewidth broadening
for the red transition is similar to that of the blue, and it does not
depend sensitively on motional effects. This behaviour is in stark
contrast to another important observation: the shift of the
transition centre frequency. Figure 4 contrasts the linecentre
frequency shift observed for 1S0� 1P1 (square) and 1S0� 3P1

(triangle, with original data reported in ref. 52 and see
Supplementary Fig. 1). The blue transition frequency shift is
consistent with zero at the level of 0.004G using an atomic density
of 1012 cm� 3. However, the measured density shift for the red
transition (normalized to the transition linewidth) is more than
one order of magnitude larger. This density-related frequency
shift significantly exceeds the predicted value based on general
S-matrix calculations of s-wave collisions52 (2.18� 10� 10

Hz cm3 if the unitary limit is used).

Theory model. Before we turn to a microscopic model to obtain a
full and consistent understanding of all these related experimental
observations, we note that semiclassical models53 treating the
atomic cloud as a continuous medium of an appropriate
refractive index can give an intuitive explanation of the
linewidth broadening in the forward direction. Classically, an
incoming electric field is attenuated as it propagates through the
medium according to the Beer–Lambert law and the forward
fluorescence intensity is determined by the same mechanism.

This simple semiclassical model recovers the linear dependence of
the forward width for small OD and predicts a nonlinear
dependence of the linewidth for large OD and a flattening of the
line centre. However, we find that this semiclassical approach
cannot provide explanations for most aspects of the experimental
observations.

The full microscopic model builds on a set of coherently
coupled dipoles. Here, each four-level atom is treated as a discrete
radiating dipole located at a frozen position, but coupled with
retarded dipole radiation, and it is driven with a weak incident
laser beam. The atomic ensemble follows the Gaussian
distribution observed in the experiment with the appropriate
aspect ratio. By solving the master equation in the steady state, we
find that the coherence, baj¼ Tr½ gj iheaj jr̂�, of atom j, located at rj is
modified by other atoms as18,54–60:

baj ¼
Oxeik�rj

2 Daþ i G2
� � da;xþG

X
a0;m 6¼ j

Ga;a0 rj� rm
� �

iDa� G
2

� � ba
0

m: ð1Þ

Here, gj i¼1S0, eaj i corresponds to the three excited states
of 1P1 or 3P1, with aA{x, y, z} representing the Cartesian
states. In addition, r̂ is the reduced density matrix of the
atoms and dg,g0 is the Kronecker Delta. The driving laser’s linear
polarization state x is along ŷ or ẑ, with wavevector k along x̂,
Rabi frequency Ox and detuned by Da from the gj i ! eaj i
transition. The function Ga,a0(r) accounts for the retarded
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Figure 3 | Transverse scattering. (a) Linewidth broadening for the blue transition in the transverse direction for ŷ polarization (open squares) and ẑ

polarization (open triangles). (b) Intensity ratio, Iypol/Izpol, of ŷ polarization to ẑ polarization measured in the transverse direction when a blue probe beam is

used. For low optical depths single particle scattering is dominant and for single particle scattering almost zero intensity is predicted for ẑ-polarized

fluorescence, as this polarization points directly into the detector. (c) Linewidth broadening for the red transition in the transverse direction for ŷ-polarized

light, showing a similar trend to the blue transition. This transition is more sensitive to magnetic fields; thus, a large magnetic field is applied to probe only

the m¼0 to m’¼0 transition. All solid curves are based on the full theory of coupled dipoles and the band in a, b and c is for a ±20% atom number

uncertainty. All error bars are for statistical uncertainties.
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pairwise dipolar interactions and is given by18,48,56

Ga;a0 ðrÞ¼� i 3
4

eikr

kr ½ da;a0 � r̂ar̂a0
� �

þ da;a0 � 3r̂ar̂a0
� �

ð i
kr � 1

ðkrÞ2Þ�. The

fluorescence intensity I rsð Þ¼hÊ
þð Þ

rsð ÞÊ
�ð Þ

rsð Þi, detected
at position rs, can be determined17,18 as a function of baj ,

I rsð Þ �
9‘ 2G2

16k2m2r2
s

X
j;m

bj � b�m� bj � r̂s
� �

b�m � r̂s
� �� �

eiks� rj � rmð Þ;

ð2Þ

with m is the atomic transition dipole moment and ks¼kr̂s.

Discussion
To understand the forward enhancement we first
consider non-interacting atoms under the zeroth order
approximation. The atomic coherence is driven only by
the probe field that imprints its phase and polarization onto

the atoms: ba 0ð Þ
j ¼

ida;xOxeik�rj =2
iD�G=2 , where D¼Da. The corresponding

intensity, I rsð Þ¼ 9‘ 2G2

16k2m2r2
s

Oxj j2
4 D2 þG2=4ð Þ ðN þN2e� ks � k0j j2R2

?;FÞ has a

Lorentzian profile. It also exhibits an N2 scaling and an enhanced
forward emission lobe, with an angular width given by the ratio
between the transition wavelength and the transverse size of the
sample Dy� 1= kR?;F

� �
. The forward lobe reflects the construc-

tive interference of the coherently emitted radiation stimulated by
the laser. Outside the coherent lobe the constructive interference
is quickly reduced due to the random position of atoms28,59,61.
The longer wavelength of the red transition corresponds
to a wider angular width of the forward lobe for the red
fluorescence.

Simple considerations can also give rise to a qualitative
understanding of atomic motion-related effects on forward
enhancement. Again for the red transition, the Doppler effect
introduces random phases accumulated by df� kv=G. Here, v is
the thermal velocity. The dephasing reduces coherent photon
emission and gives rise to a net suppression of the forward
emission intensity. The suppression becomes stronger with DD/G,

with DD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT
8ml2 ln 2

q
the Doppler width. Such a suppression is

clearly observed for the red transition.
To address the linewidth broadening we now consider atoms

coupled by dipolar interactions, which tend to emit collectively in
an optically dense cloud. The collective emission manifests itself
with a broader fluorescence linewidth. Moving to the first-
order approximation, we note that the atomic coherence
acquires contributions not only from the probe beam but

also from the surrounding atoms, with baj � ba 0ð Þ
j þ ba 1ð Þ

j . Here,

ba 1ð Þ
j ¼

iOxG=2
iD�G=2ð Þ2 Kj

a;xeikxj and Kj
a;a0¼

P
m 6¼ j Ga;a0 rj� rm

� �
eik xm � xjð Þ:

For a relatively dilute cloud with average interparticle distance
�r 	 1=k, the far-field interactions dominate; thus, higher-order
terms beyond 1/r can be neglected. Dipolar interactions modify
the fluorescence lineshape, with consequences of both a frequency
shift that depends on the cloud peak density n0 and a line
broadening that is proportional to OD: D! Dþ �D and

G! Gþ �G, with �D¼� 3
ffiffi
2
p

pn0k� 3

16 G and �G¼ OD
4 G. Thus, the

first-order approximation provides an intuitive picture about the
role of dipolar effects on the lineshape.

However, in a cloud with an increasingly large OD, dipolar
interactions are stronger and multiple scattering processes
become relevant. The first-order perturbative analysis then breaks
down62–64. The full solution of equation (1) based on the
coherent coupled dipole model becomes necessary to account for
multiple scattering processes (see Methods). The first signatures

arise from the forward fluorescence intensity, where its naive
N2 scaling is reduced with an increasing atom number as a
consequence of multiple scattering processes. This effect is
observed in both red and blue calculations, and it is expected to
be more pronounced on the red transition due to its longer
wavelength. However, atomic motion leads to a lower effective
OD, which tends to suppress multiple scattering processes and
thus helps to partially recover the collective enhancement.
The solid lines in Fig. 2a,b represent such quantitative
theory calculations for both transitions, which agree with the
experiment.

Meanwhile, for the linewidth broadening observed in the
forward direction, it becomes evident that the scaling of the
linewidth versus OD turns nonlinear at large values of OD. The
experimental data falls within the shaded area in Fig. 2c, which
represents the full solution with a 20% uncertainty in the
experimental atom number. Multiple scattering processes are also
key to the explanation of the measured fluorescence along the
transverse direction, especially for the classically forbidden
polarization ẑ. Indeed, for both intensity and linewidth
broadening observed in the transverse direction, under either ŷ
or ẑ probe polarization, the full model (shown as shaded areas
in both Fig. 3a,b) reproduces well the experimental results
on 1S0� 1P1. Taking into account motional dephasing
(see Supplementary Note 2), the transverse broadening for
1S0� 3P1 is also well reproduced as shown in Fig. 3c.

So far, we have shown the observed effects on linewidth and
fluorescence intensity are uniquely determined by OD. However,
following the arguments discussed above, the frequency shift
arising from the dipolar coupling is expected to scale with atomic
density, �D

�� ��=G / n0k� 3, which includes both the collective Lamb
shift and the Lorentz–Lorenz shift50,65. For our experimental
density, this effect is t10� 3, which is consistent with the
observed frequency shift for the blue transition (Fig. 4). (It is
noteworthy that the role of multiple scattering processes is to
further suppress this frequency shift mechanism50.) In contrast,
for the red transition the measured density shift (normalized to
G) is significantly larger than what is predicted from the current
treatment of interacting dipoles; it is also much bigger than the
unitarity limit of s-wave scattering. Qualitatively, we expect that
as the atoms move and approach each other, the long-lived
ground-excited state coherence in the red transition can be
significantly modified by the collisional process and open higher
partial wave channels. We can thus expect a larger collisional
phase shift. This process can be further complicated by atomic
recoil, light forces and Doppler dephasing66.

We have shown that a coherent dipole model describes light
scattering in a dense atomic medium with collective effects and
multiple scatterings. The model captures the quantitative features
of the experimental observations. Motional effects, as manifested
in dephasing, can be captured in the model as well. Our results
provide useful guides for further developments of optical atomic
clocks and other applications involving dense atomic ensembles.

Methods
Coherent dipole model. Here we present the derivation of equation (1). The
fundamental assumption is to treat the atoms as frozen during the interrogation.
This is an excellent approximation if :G is much faster than other energy scales in
the problem. The latter condition is always satisfied in the case of the blue
transition. For the J¼ 0 to J¼ 1 configuration exhibited by 88Sr, we can label the
J¼ 0 ground state as gj i and the excited J¼ 1 states using a Cartesian basis
ezj i¼ 0j i, exj i¼ � 1j i � þ 1j ið Þ=

ffiffiffi
2
p

, eyj i¼i � 1j i þ þ 1j ið Þ=
ffiffiffi
2
p

. Here, the |0, ±1i
states are the standard angular momentum ones. In the Cartesian basis,
the vector transition operator for the j atom located at rj can be written as
ba

j ¼x̂b̂x
j þ ŷb̂y

j þ ẑb̂z
j . Here b̂aj ¼ gj ij eah j. On this basis, the master equation

governing the evolution of the reduced density matrix of the N atom ensemble,
r̂, in the presence of an incident laser beam with linear polarization x can be
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written as18:

dr̂
dt ¼ � i

2

P
j;a

da;x Oj b̂
ay
j þO�j b̂aj ; r̂

h i
� i

P
j;m 6¼ j
a;b

gabjm b̂
ay
j b̂bj ; r̂

h i

þ i
P
j;a

Da½b̂ayj b̂aj ; r̂� þ
P
j;m
a;b

f abjm 2b̂aj r̂b̂
by
m � b̂

ay
j b̂bm; r̂

n o� 	
;

ð3Þ

where Oj¼Oxeik�rj is the Rabi frequecy of the incident field, polarized along x
ðx̂ � k¼0Þ and detuned by Da from the atomic transition gj i ! eaj i. The
parameters gabjm¼ga;b rj � rm

� �
and f abjm ¼fa;b rj� rm

� �
are the components of the

elastic and inelastic dipolar interactions between a pair of atoms at position rj and
rm, respectively, and are given by

ga;b rð Þ¼ 3G
4

y0 krð Þ� y1 krð Þ
kr


 �
da;bþ y2 krð Þr̂a r̂b

� 
; ð4Þ

fa;b rð Þ¼ 3G
4

j0 krð Þ� j1 krð Þ
kr


 �
da;b þ j2 krð Þr̂a r̂b

� 
; ð5Þ

where r¼ rj j ¼ rj � rm

�� ��, yn(x), jn(x) are the spherical Bessel functions of the
second and first kind, respectively. Here, also a, b¼ x, y or z represent
Cartesian components. The symbol dg,g0 is the Kronecker Delta. In the low-
intensity limit, we can project the density matrix into a state space including the
ground state Gj i 
 g1; g2; :::gNj i and states with only one excitation57–59 such

as jaj i 
 g1; :::eaj ; :::gN

��� E
. In this reduced space, the relevant equations of motion

simplify to

drja;ja

dt ¼ � i
2 Ojda;xrG;ja �O�j da;xrja;G

� 	
� i

P
m 6¼ j;b

gabjm rmb;ja � rja;mb

� 	
�

P
m 6¼ j;b

f abjm rmb;ja þrja;mb

� 	
�Grja;ja;

ð6Þ

drja;G

dt ¼ � i
2 Ojda;xrG;G �

P
m
Omrja;mx


 �
� i

P
m 6¼ j;b

gabjm � if abjm

� 	
rmb;G

þ iDa � G
2

� �
rja;G;

ð7Þ

drja;mb

dt ¼ � i
2 Ojda;xrG;mb �O�mdx;brja;G

� 	
þ iðDa �DbÞrja;mb

� i
P

l 6¼ j;n
rln;mbga;njl �

P
l 6¼m;n

rja;lngb;nlm

 !
�Grja;mb

�
P

l 6¼ j;n
rln;mbf anjl þ

P
l 6¼m;n

rja;lnf bnlm

 !
;

ð8Þ

drG;G

dt ¼ � i
2

P
j;a

O�j rja;G �OjrG;ja

 !
þG 1� rG;G

� �
þ

P
m;j 6¼m
a;b

f abjm rja;mbþ rmb;ja

� 	
:

ð9Þ

where rG;G¼ Tr r̂ Gj i Gh j½ �, rja;mb¼ Tr r̂ b̂bym b̂aj

� 	h i
and rja;G¼ Tr b̂aj r̂

h i
.

As we are interested in the situation of a weak probe limit, Ox � G, we expand
the density matrix in successive orders of Ox/G, r̂¼r̂ 0ð Þ þ r̂ 1ð Þ þ r̂ 2ð Þ þ . . . , and
keep the first-order terms. At this level of approximation, rG,G¼ 1, rja,mb¼ 0 and
only the optical coherences baj 
 rja;G evolve in time accordingly to the following
set of linear equations:

dbaj
dt
¼ iDa � G

2


 �
baj �

i
2
Ojda;x � i

X
m 6¼ j;b

gabjm � if abjm

� 	
bbm: ð10Þ

Here, Ga,b(r)¼ (fa,b(r)þ iga,b(r))/G. The steady-state solution can be

obtained by setting
dbaj
dt ¼0 and then solving the subsequent 3N linear equations.

Measure the enhancement of forward fluorescence. To measure the scattered
light in the forward direction, we use the setup shown in the inset of Fig. 2a, to
tightly focus and block the probe beam, while still collecting most of the atomic
fluorescence on the CCD (charge-coupled device) camera. We focus the probe
beam, after it interacts with the atoms, to a small spot with 15 mm root-mean-
squared radius and block it using a beam stopping blade. We then translate the
beam stopper perpendicular to the probe beam by a distance Dx from our reference
point of x¼ 0, which we define as the position of the beam stopper where we see
the greatest fluorescence without saturating the CCD camera with the probe beam.
As only the forward direction is particularly sensitive to positional changes, we
convert this change in position to a change in angle simply using y¼ arctan Dx

15cm,

where the first lens with a 15-cm focal length collimates the fluorescence. In
numerical calculations, the CCD camera is simulated as a ring area centred around
the forward direction and the average intensity collected over the ring is
determined. The external radius is set to be large enough to reach the angular
region outside the interference cone and the inner angular radius ysim, simulating
the blocking of the signal by the beam stopper, is varied accordingly to the
experiment. To account for the difference between ssim and the experiment cloud
size, ysim is rescaled so that we satisfy the experimental observation that at ymax the
enhancement factor drops to 1.
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shift in single-photon superradiance. Science 328, 1248–1251 (2010).

25. Balik, S., Win, A. L., Havey, M. D., Sokolov, I. M. & Kupriyanov, D. V.
Near-resonance light scattering from a high-density ultracold atomic 87Rb gas.
Phys. Rev. A 87, 053817 (2013).

26. Chalony, M., Pierrat, R., Delande, D. & Wilkowski, D. Coherent flash of light
emitted by a cold atomic cloud. Phys. Rev. A 84, 011401 (2011).

27. Guerin, W., Araujo, M. O. & Kaiser, R. Subradiance in a large cloud of cold
atoms. Phys. Rev. Lett. 116, 083601 (2016).

28. Kwong, C. C. et al. Cooperative emission of a coherent superflash of light.
Phys. Rev. Lett. 113, 223601 (2014).

29. Labeyrie, G. et al. Coherent backscattering of light by cold atoms. Phys. Rev.
Lett. 83, 5266–5269 (1999).

30. Kulatunga, P. et al. Measurement of correlated multiple light scattering in
ultracold atomic 85Rb. Phys. Rev. A 68, 033816 (2003).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11039

6 NATURE COMMUNICATIONS | 7:11039 | DOI: 10.1038/ncomms11039 | www.nature.com/naturecommunications

http://arxiv.org/abs/1511.08527
http://arxiv.org/abs/1511.08527
http://arxiv.org/abs/1510.08041
http://arxiv.org/abs/1510.08041
http://arxiv.org/abs/1602.01037
http://www.nature.com/naturecommunications


31. de Vries, P., van Coevorden, D. V. & Lagendijk, A. Point scatterers for classical
waves. Rev. Mod. Phys. 70, 447–466 (1998).

32. van Rossum, M. C. W. & Nieuwenhuizen, T. M. Multiple scattering of classical
waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313–371
(1999).

33. Walker, T., Sesko, D. & Wieman, C. Collective behaviour of optically trapped
neutral atoms. Phys. Rev. Lett. 64, 408–411 (1990).

34. Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the
strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

35. Lukin, M. D. et al. Dipole blockade and quantum information processing in
mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

36. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg
atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

37. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of
dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
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